

Adaptive Nulling: a new tool for interferometric planet detection

Oliver Lay

Jet Propulsion Laboratory California Institute of Technology

Outline

- Interferometric nulling
- The current approach
- Adaptive nulling
- Compensator design
- **Benefits**
- Challenges

- Explain why adaptive nulling is worth pursuing
- Demonstrate that it is feasible

Interferometric nulling with TPF

• Planet flux ~ 10⁻⁶ x star

• Null $\sim 10^{-5} - 10^{-6}$

Nulling

- For deep null require electric fields with
 - equal amplitudes
 - opposite phases
- simultaneously at each wavelength and polarization
- Single-mode filter makes it this simple (removes all spatial effects)

The TPF optical system

- The nuller is the whole instrument system, not just the nulling beam combiner
- A perturbation anywhere in the beam train will impact the null
- Focus has been on the nulling beam combiner

Current approach

Nulling Requirements

Intensity Match Requirements

Phase Match Requirements

Many very tight requirements Each with different spectral dependence

Challenges for current approach

- Nulling is a system-wide issue, driving tight tolerances...
 - primary mirror
 - beam transport
 - coatings
 - beam combiners
- ...and challenging Integration & Test
- Difficult to achieve deep null over broad bandwidth (7-20 um) with single nuller
- Null is sensitive to in-flight perturbations, e.g.
 - Contamination on optical surfaces
 - Mis-alignment

New approach

Include a compensator to actively control amplitude and phase for each polarization and wavelength at low bandwidth ($< f_{\rm chop}$)

Compensator requirements

- Control (A, ϕ) independently at each { λ , pol}
- Path lengths matched between units at each $\{\lambda, \text{ pol}\}\$
- Minimal impact on throughput

Possible Compensator Design

Phase and Amplitude Control

Phase control with piston*:

Amplitude control with tilt*:

- Deformable mirror allows independent control of piston and tilt at each wavelength and polarization
- Nulled science output used as the sensor with simple iterative feedback loop
 - Local Zodi ~100 photons / s in each of ~20 chans => low bandwidth (tens of seconds)

* Side view, shown for single wavelength & polarization

Advantages of adaptive nulling

- Relax manufacturing and alignment tolerances (nuller, main optics, beam-train)
- Robust to in-flight perturbations (e.g. contamination, misalignment)
- Potential increase in bandwidth (turns broadband) nuller into monochromatic single pol)
- Allows greater flexibility and simplicity in optical design (freedom from symmetry)
- Converts a system problem into a component problem, easing I&T

Intensity Match Requirements

Phase Match Requirements

Challenges for adaptive nulling

- Retain high throughput
 - Alignment
 - Good focus over broad passband
- Accommodate metrology
- Components for mid-IR
 - Birefringent material

Key compensator parameters

- **Precision**
- **Stability**
- Dynamic range
- Optical bandwidth

IPL Adaptive Nulling with Integrated Optics

- As IO technology develops and matures, it may become possible to implement an Adaptive Nulling compensator using Integrated Optics technology
- · Combine compensator, nuller, spatial filter and detectors
- Compact and rugged
- Probably beyond current state-of-the-art

Summary

- A successful demonstration of Adaptive Nulling would lead to TPF/DARWIN interferometer designs that are
 - Cheaper (relaxed tolerances, less analysis needed)
 - More robust
 - More flexible
 - Easier to integrate and test
- An Adaptive Nulling compensator looks feasible with current technology